10 research outputs found

    A pointwise tracking optimal control problem for the stationary Navier--Stokes equations

    Full text link
    We study a pointwise tracking optimal control problem for the stationary Navier--Stokes equations; control constraints are also considered. The problem entails the minimization of a cost functional involving point evaluations of the state velocity field, thus leading to an adjoint problem with a linear combination of Dirac measures as a forcing term in the momentum equation, and whose solution has reduced regularity properties. We analyze the existence of optimal solutions and derive first and, necessary and sufficient, second order optimality conditions in the framework of regular solutions for the Navier--Stokes equations. We develop two discretization strategies: a semidiscrete strategy in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For each solution technique, we analyze convergence properties of discretizations and derive a priori error estimates

    A DPG method for linear quadratic optimal control problems

    Full text link
    The DPG method with optimal test functions for solving linear quadratic optimal control problems with control constraints is studied. We prove existence of a unique optimal solution of the nonlinear discrete problem and characterize it through first order optimality conditions. Furthermore, we systematically develop a priori as well as a posteriori error estimates. Our proposed method can be applied to a wide range of constrained optimal control problems subject to, e.g., scalar second-order PDEs and the Stokes equations. Numerical experiments that illustrate our theoretical findings are presented

    error estimates for semilinear optimal control problems

    No full text
    In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we devise and analyze a reliable and efficient a posteriori error estimator for a semilinear optimal control problem; control constraints are also considered. We consider a fully discrete scheme that discretizes the state and adjoint equations with piecewise linear functions and the control variable with piecewise constant functions. The devised error estimator can be decomposed as the sum of three contributions which are associated to the discretization of the state and adjoint equations and the control variable. We extend our results to a scheme that approximates the control variable with piecewise linear functions and also to a scheme that approximates the solution to a nondifferentiable optimal control problem. We illustrate the theory with two and three-dimensional numerical examples
    corecore